首页> 外文OA文献 >Hardware-Driven Nonlinear Activation for Stochastic Computing Based Deep Convolutional Neural Networks
【2h】

Hardware-Driven Nonlinear Activation for Stochastic Computing Based Deep Convolutional Neural Networks

机译:基于随机计算的深度硬件驱动非线性激活   卷积神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, Deep Convolutional Neural Networks (DCNNs) have made unprecedentedprogress, achieving the accuracy close to, or even better than human-levelperception in various tasks. There is a timely need to map the latest softwareDCNNs to application-specific hardware, in order to achieve orders of magnitudeimprovement in performance, energy efficiency and compactness. StochasticComputing (SC), as a low-cost alternative to the conventional binary computingparadigm, has the potential to enable massively parallel and highly scalablehardware implementation of DCNNs. One major challenge in SC based DCNNs isdesigning accurate nonlinear activation functions, which have a significantimpact on the network-level accuracy but cannot be implemented accurately byexisting SC computing blocks. In this paper, we design and optimize SC basedneurons, and we propose highly accurate activation designs for the three mostfrequently used activation functions in software DCNNs, i.e, hyperbolictangent, logistic, and rectified linear units. Experimental results on LeNet-5using MNIST dataset demonstrate that compared with a binary ASIC hardware DCNN,the DCNN with the proposed SC neurons can achieve up to 61X, 151X, and 2Ximprovement in terms of area, power, and energy, respectively, at the cost ofsmall precision degradation.In addition, the SC approach achieves up to 21X and41X of the area, 41X and 72X of the power, and 198200X and 96443X of theenergy, compared with CPU and GPU approaches, respectively, while the error isincreased by less than 3.07%. ReLU activation is suggested for future SC basedDCNNs considering its superior performance under a small bit stream length.
机译:最近,深度卷积神经网络(DCNN)取得了空前的进步,在各种任务中达到了接近或优于人类水平的感知精度。迫切需要将最新的软件DCNN映射到专用硬件,以实现性能,能效和紧凑性的数量级改进。作为传统二进制计算范式的低成本替代方案,随机计算(SC)有潜力实现DCNN的大规模并行和高度可扩展的硬件实现。基于SC的DCNN的一个主要挑战是设计精确的非线性激活函数,该函数对网络级的精度有重大影响,但是无法通过现有的SC计算模块来准确实现。在本文中,我们设计和优化了基于SC的神经元,并且针对软件DCNN中的三个最常用的激活函数(即双曲线正切,逻辑和整流线性单元)提出了高度精确的激活设计。使用MNIST数据集在LeNet-5上进行的实验结果表明,与二进制ASIC硬件DCNN相比,带有拟议中的SC神经元的DCNN可以分别在面积,功率和能量方面实现多达61倍,151倍和2倍的改进,而代价是此外,与CPU和GPU方法相比,SC方法分别可实现高达21X和41X的面积,41X和72X的功耗,198200X和96443X的能量,而误差增加不到3.07 %。建议在未来的基于SC的DCNN中使用ReLU激活,考虑到其在小比特流长度下的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号